
How observability helps you diagnose,
fix, and prevent critical issues

Troubleshooting Kubernetes Environments: Shifting Gears on your Journey to Digital Resilience

Troubleshooting Kubernetes Environments

Shifting Gears on
your Journey to
Digital Resilience

Troubleshooting Kubernetes Environments: Shifting Gears on your Journey to Digital Resilience | Splunk 2

Navigating Kubernetes
at high speed
Imagine cruising at 80 mph on a highway when warning lights flash

across the dashboard. You know something’s wrong, but without real

diagnostics, you’re left guessing. That’s exactly what troubleshooting

inside Kubernetes environments feels like without observability — blind,

reactive, and full of uncertainty.

Kubernetes is constantly in motion — containers start and stop, workloads

shift dynamically, and infrastructure scales horizontally and vertically in

response to demand. When something goes wrong, “pulling over” to assess

the issue isn’t an option. Engineers must diagnose problems in real time

and those that lack observability often don’t have a clear view of what’s

happening under the hood.

Troubleshooting Kubernetes Environments: Shifting Gears on your Journey to Digital Resilience | Splunk 3

The growing complexity of Kubernetes environments
Kubernetes has progressed beyond a simple container orchestrator
into a comprehensive system for managing dynamic, distributed,
and multicloud workloads. While this evolution has unlocked
new efficiencies and scalability, it has also introduced unique
troubleshooting challenges that traditional monitoring tools
struggle to address.

•	 Kubernetes workloads are often stateless and ephemeral, leading
to difficulty tracking failures, debugging transient issues, and
maintaining persistent context across restarts.

•	 Failures can manifest anywhere inside a Kubernetes
environment — infrastructure (nodes, storage, networking),
Kubernetes control plane (API server, scheduler, controllers), and
workloads (pods, deployments, applications). Each layer presents
distinct challenges, making root cause analysis more complex than
traditional infrastructure.

•	 As Kubernetes environments evolve, new tools and modernization
strategies accelerate change but also introduce unforeseen
complexity — siloed solutions, multicloud deployments, and
increased operational overhead make troubleshooting more difficult.
Without observability, fragmented visibility and inefficiencies further
slow resolution, leaving teams struggling to diagnose issues in
dynamic environments.

•	 The constant change in Kubernetes environments (with frequent
deployments, autoscaling, and shifting infrastructure) generates an
overwhelming volume of telemetry data. Identifying key signals and
tracking performance over time is increasingly complex, making it
harder to detect patterns and diagnose recurring issues.

Troubleshooting Kubernetes Environments: Shifting Gears on your Journey to Digital Resilience | Splunk 4

From blind spots to clear roads:
Using observability to troubleshoot
Kubernetes environments
Troubleshooting in Kubernetes environments without observability
is like driving through an unfamiliar city with no navigation system —
you might eventually get where you need to go, but it’ll be slow,
frustrating, and full of wrong turns. Like a torn map, fragmented logs
and manual debugging leave engineers piecing and taping together
clues with little to no guidance.

When implemented properly, observability acts as your GPS, helping
you quickly pinpoint root causes and navigate the complexities of
modern Kubernetes environments by consolidating the entire system
view and providing critical insights into its dynamic operations.

Effective troubleshooting in Kubernetes environments requires more
than raw data. Engineers need visibility, correlation, and context
to make sense of what’s happening. An observability solution
should provide:

•	 Comprehensive visibility across Kubernetes environments
integrates logs, metrics, and traces within a unified observability
platform, ensuring engineers can track performance, detect
failures, and correlate events across nodes, pods, and services,
helping them quickly diagnose and resolve issues.

•	 Proactive anomaly detection identifies irregular workload
behavior, unexpected resource contention, and scaling
inefficiencies before they escalate into service disruptions.

•	 Contextual, real-time insights provide correlation across
Kubernetes events, workload performance, and cluster metrics,
accelerating root cause analysis (RCA) and reducing Mean Time to
Resolution (MTTR).

•	 Forensic troubleshooting and historical insights enable teams
to investigate past incidents, identify root causes, and analyze
resource usage patterns to optimize allocations and prevent
recurring issues.

Observability provides the insight needed to stay ahead of
issues, prevent disruptions, and accelerate troubleshooting
during unplanned downtime, keeping systems running at optimal
performance. But even with the best observability in place, failures
can still occur.

Rapid diagnosis and resolution are just as critical as proactive
monitoring to ensure reliable operations at scale. Much like a modern
car’s dashboard alerts you to low fuel, tire pressure, or engine trouble
before they cause problems, observability equips engineers with
the insights they need to drive Kubernetes environments smoothly
and efficiently.

Troubleshooting Kubernetes Environments: Shifting Gears on your Journey to Digital Resilience | Splunk 5

The Kubernetes visibility crisis:
Why legacy tools are falling behind

CHALLENGE 1

Don’t operate a high-performance machine with
a broken dashboard

Driving an older car with a flickering warning light — or worse,

no warning lights at all — leaves you guessing at what’s failing

beneath the hood and when catastrophe might hit.

Similarly, many teams operate Kubernetes clusters with

incomplete visibility, relying on fragmented tools that leave

them blind to critical performance issues. Teams that lack

full observability are forced to troubleshoot through trial

and error, slowing down resolution. Engineers waste time

piecing together logs and traces, only to chase false leads

and misdiagnosed root causes.

Troubleshooting Kubernetes Environments: Shifting Gears on your Journey to Digital Resilience | Splunk 5

Troubleshooting Kubernetes Environments: Shifting Gears on your Journey to Digital Resilience | Splunk 6

The problem
Kubernetes environments generate vast amounts of telemetry
data — logs, metrics, and traces — but legacy monitoring tools
weren’t built for the dynamic nature of containerized workloads.
Teams have historically relied on separate tools for each data type,
leading to non-contextual, inconsistent, and incomplete insights.

•	 Logs, metrics, and traces are spread across multiple tools,
making correlation difficult while increasing spend due to
overlapping functionality.

•	 Teams lack visibility across multicloud deployments,
leaving critical blind spots, increasing operational costs and
impacting SLAs.

•	 Teams monitor Kubernetes clusters in isolation, without visibility
into the broader application stack. This leads to blind spots in
diagnosing issues that originate outside Kubernetes, such as
databases, external APIs, or front-end services.

•	 Vendor lock-in limits flexibility and increases toil when adapting
telemetry pipelines for compliance, cost efficiency, or evolving
best practices — highlighting the need for open standards like
OpenTelemetry.

•	 Manual dependency mapping can’t keep pace with Kubernetes
environments, where dynamic service relationships shift
constantly, and static diagrams quickly become outdated.

Inconsistent troubleshooting methods slow down issue resolution,
increasing MTTR and putting service reliability at risk.

Why it’s challenging

•	 Monitoring only individual clusters apart from the
larger IT ecosystem leads to missed dependencies and
incomplete root cause analysis.

•	 Fragmented tools force engineers into “swivel
chair” troubleshooting, manually stitching together
logs, metrics, and traces — slowing decision-making,
increasing MTTR, and creating excessive alert noise.

•	 Lack of intelligent or adaptive thresholding (like
anomaly detection) leaves teams reacting to failures
rather than preventing them.

•	 The rapid pace of change in Kubernetes environments
makes static dashboards and manual instrumentation
outdated almost immediately.

•	 Legacy monitoring tools lack full coverage across
metrics, events, logs, and traces (MELT), making
troubleshooting issues in dynamic, multicloud
Kubernetes environments difficult.

Troubleshooting Kubernetes Environments: Shifting Gears on your Journey to Digital Resilience | Splunk 7

Observability insights and best practices
Modern Kubernetes environments require more than just
traditional monitoring — they demand a comprehensive approach
to observability. When teams lack a unified strategy, they waste
time treating symptoms rather than solving underlying problems.
For example, a failing pod in one cluster might not trigger alerts in
another, but it could still affect service performance across clusters.

•	 Unify observability across metrics, events, logs, and traces to
eliminate data silos, improve real-time correlation, and provide
visibility across infrastructure, applications, and multicloud
environments.

•	 Monitor dependencies across clusters and applications
to identify bottlenecks in distributed services, ensuring
troubleshooting includes Application Performance Monitoring
(APM) as well as tight integrations with Digital Experience
Monitoring (DEM) tools, including Real User Monitoring (RUM) and
synthetic testing solutions.

•	 Use AI-driven anomaly detection and intelligent thresholding
based on historical baselines to proactively surface issues, reduce
alert noise, and improve troubleshooting accuracy.

•	 Utilize distributed tracing to pinpoint the exact source of latency
issues and accelerate root cause analysis.

•	 Leverage OpenTelemetry to avoid vendor lock-in, standardize
telemetry collection, and enhance cross-platform troubleshooting.

•	 Collect and analyze RED metrics (Rate, Errors, Duration)
to Kubernetes workloads to systematically measure request
throughput, failure rates, and response latency — ensuring
effective performance monitoring and troubleshooting.

•	 Embrace AI assistants that access your system data to
accelerate analysis, identify patterns and anomalies, and guide
troubleshooting — enabling users of all skill levels to operate with
expert insight.

Troubleshooting Kubernetes without full visibility is like driving at
night with your headlights off — limited sight means slower reactions
and higher risk. Observability cuts through the darkness, giving
engineers a clear path to diagnose issues, optimize performance,
and ensure workloads run efficiently at scale.

ON-RAMP TO LEARN MORE:

Kubernetes Monitoring: The Ultimate Guide | Splunk

https://www.splunk.com/en_us/blog/learn/kubernetes-monitoring.html

Troubleshooting Kubernetes Environments: Shifting Gears on your Journey to Digital Resilience | Splunk 8

Category Metric Description and Details

Cluster Health Cluster API Server Availability,
Latency, and Errors

Monitors the Kubernetes API server’s health, ensuring it’s available and responsive. High latency or

frequent errors can indicate control plane issues affecting cluster management.

Node Status Tracks the health and status of cluster nodes. Detecting unavailable or unhealthy nodes early

helps prevent workload disruptions.

Pods and Container
Health

Status Indicates the current state of running pods, showing if they are ready, pending,

or in an error state.

Desired vs. Actual Counts Compares the expected number of running pods to the actual count. Discrepancies can signal

scheduling failures or resource constraints.

Restarts Tracks pod restarts due to crashes or failures. Frequent restarts may indicate misconfigurations,

insufficient resources, or application errors.

Network and Service
Performance

Cross-cluster Network
Latency and Failures

Measures latency and failures in cross-cluster communication. High latency can lead to degraded

service performance and timeout issues.

DNS Resolution Time and Failures Tracks DNS resolution times and failures within the cluster. Slow resolution or failures can cause

service disruptions and connectivity issues.

Service Discovery Errors Identifies service discovery errors that can impact inter-service communication. Monitoring helps

detect misconfigurations and broken dependencies.

Request Rates, Latency, Throughput Observes request rates, latency, and throughput for services. High latency or degraded throughput

can indicate bottlenecks or overloaded services.

Resource Utilization
and Capacity

CPU/Memory/Disk
Utilization and Capacity

Measures resource usage, consumption, and available capacity across nodes, pods,

and containers. Monitoring trends helps prevent resource exhaustion and improve

workload scheduling.

Key kubernetes metrics

Troubleshooting Kubernetes Environments: Shifting Gears on your Journey to Digital Resilience | Splunk 9

Diagnosing scaling and
performance bottlenecks

CHALLENGE 2

Pressing the gas but not speeding up

Have you ever had a car where you step on the gas and there’s

a hesitation before it accelerates? That’s like Kubernetes

autoscaling delays — by the time it reacts, demand has

already shifted.

Not anticipating demand and load as well as misconfigured

scaling can leave workloads starving for resources exactly

when you need them the most (like during a traffic spike) or

wasting capacity — just like a turbocharged engine might

experience turbo lag before delivering full power. Engineers

need real-time insights into scaling behavior to ensure

their Kubernetes workloads respond efficiently, keeping

applications running smoothly under fluctuating demand.

Troubleshooting Kubernetes Environments: Shifting Gears on your Journey to Digital Resilience | Splunk 9

Troubleshooting Kubernetes Environments: Shifting Gears on your Journey to Digital Resilience | Splunk 10

The problem
Kubernetes pod autoscaling mechanisms, including some popular
approaches such as Horizontal Pod Autoscaler (HPA) and Vertical
Pod Autoscaler (VPA), are designed to adjust resources dynamically,
but improper configurations or failing to use these autoscaling
approaches altogether can lead to severe performance bottlenecks:

•	 Kubernetes scaling inefficiencies have up- and down-stream
impacts — poor scaling decisions can lead to increased latency,
service slowdowns, and cascading failures across microservices,
databases, and APIs.

•	 Setting CPU budgets too low (sometimes called under-requesting)
can lead to throttling, while misconfigured memory budgets can
cause Out of Memory (OOM) kills, leading to pod restarts and
degraded performance.

•	 Node resource saturation causes pod evictions, resource
contention, and even cluster instability.

•	 Cold start delays prevent new pods from responding to increased
demand quickly, especially in autoscaled environments where
workloads with large images, JVM-based applications, or database
dependencies require extended initialization times.

•	 Over- or under-provisioning of resources not only inflates cloud
costs but also leads to throttling, slow response times, or failures
under load, especially in environments without visibility into real
usage patterns.

•	 Complexity in mixed workloads (e.g., hybrid or multicloud
environments) makes optimizing scaling strategies even more
difficult, especially when workloads must communicate across
clusters or clouds with different autoscaling policies.

Cloud-native autoscaling often relies on cloud provider-specific
mechanisms, such as AWS Auto Scaling, Google Cloud’s Cluster
Autoscaler, or Azure Kubernetes Service scaling. While these
tools can help with dynamic workload adjustments, they are often
disjointed, leading to inconsistencies across multicloud or hybrid
environments. Teams that lack an observability strategy face
challenges diagnosing scaling issues in real-time, leading to higher
MTTR and lower application reliability.

Why it’s challenging

•	 Fragmented observability makes it hard to connect
scaling events to business impact, leaving teams blind
to user-facing consequences.

•	 Without real-time visibility into scaling behavior, teams
are prone to misconfiguring resource requests — leading
to wasted capacity or performance bottlenecks.

•	 Ignoring pod evictions and resource contention,
resulting in unexpected application failures.

•	 Autoscaling tuning is an art form. HPA utilizes multiple
occurrences of an observed metric to balance temporary
deviations and avoid “flapping” (frequent scaling in/out).

•	 HPA and VPA can conflict in dynamic environments.
HPA scales pod count based on resource utilization, while
VPA adjusts pod resource requests, potentially causing
restarts. Coordination is needed to prevent conflicts.

•	 JVM-based workloads add tuning complexity (e.g., cold
starts, garbage collection, memory management), often
interfering with autoscaling and potentially contributing
to performance bottlenecks.

•	 Kubernetes issues can cause widespread disruption,
as the platform now powers many of the most critical
business services.

Troubleshooting Kubernetes Environments: Shifting Gears on your Journey to Digital Resilience | Splunk 11

Observability insights and best practices
Not thinking about scaling in advance leads teams to reactively
adjust limits, modify thresholds, and deploy resources without fully
grasping the consequences. These guesswork-driven changes can
either lead to unnecessary costs, ongoing performance bottlenecks,
or even worse, eroded brand reputation.

To maintain optimal Kubernetes performance, teams need
observability-driven insights that provide clarity into autoscaling
behavior and resource utilization:

•	 Unify your observability data to capture the full picture of
Kubernetes performance, ensuring that scaling and tuning
decisions are informed by end-to-end insights — from
infrastructure to customer impact.

•	 Correlate autoscaling events with external service dependencies
to identify latency bottlenecks caused by uneven scaling across
microservices or databases.

•	 Monitor real-time scaling behavior to detect and resolve delays
before they impact users.

•	 Track key resource and performance metrics (like CPU, memory,
and RED signals) to spot bottlenecks early and prevent degraded
user experiences.

•	 Leverage baselines, forecasts, and business demand to fine tune
autoscaling configurations, optimizing efficiency over time.

•	 Track node-level resource saturation to detect pod evictions early
and ensure workloads are scheduled efficiently across the cluster.

•	 Analyze pod startup times and correlate with autoscaling events
to fine-tune scaling triggers, especially for latency-sensitive
applications.

•	 Ensure balanced resource allocation by leveraging observability
to avoid over-provisioning (wasting compute) or under-provisioning
(causing service degradation) capacity.

•	 Stay current on evolving autoscaling strategies beyond pods, and
use observability to track how node, cluster, and workload scaling
impacts overall performance.

Observability acts as a performance tuning tool, much like a vehicle’s
onboard diagnostics system that continuously tracks performance
over time. Just as modern cars use telemetry data to optimize
engine efficiency and anticipate issues, Kubernetes teams can
analyze historical metrics to fine-tune autoscaling strategies. This
approach ensures Kubernetes scaling decisions are as precise as a
finely tuned engine — delivering the right resources at the right time
with no unnecessary delays.

ON-RAMP TO LEARN MORE:

Kubernetes Horizontal Pod Autoscaling

https://community.splunk.com/t5/Community-Blog/Kubernetes-Horizontal-Pod-Autoscaling/ba-p/695886

Troubleshooting Kubernetes Environments: Shifting Gears on your Journey to Digital Resilience | Splunk 12

Category Metric Description and Details

Horizontal and
Vertical Scaling

Desired Replicas vs. Actual Replicas
(HPA)

Compares the number of desired pod replicas to the actual running pods. Large discrepancies

may indicate HPA misconfigurations, a lack of resources in the cluster, or delays starting

applications.

Cluster Autoscaler Activity
and Node Count

Monitors autoscaler decisions and node count changes. Helps detect delayed scaling events,

resource saturation, and cluster imbalance.

Cluster Autoscaler Event Logs Logs scaling decisions made by the Cluster Autoscaler. Analyzing events helps identify scaling
inefficiencies and bottlenecks in resource provisioning.

Pod and Node Health CPU/Memory Requests
vs. Limits

Evaluates requested vs. allocated CPU and memory resources. Disparities or throttling can lead

to resource waste (over-provisioning) or performance bottlenecks (under-provisioning).

Pod Evictions and Restart Counts
OOM (Out of Memory)

Counts pod evictions and restarts caused by out-of-memory (OOM) conditions, resource

constraints, or policy violations. Frequent occurrences indicate excessive resource contention or

poor memory allocation.

Traffic and load
balancing

Request Rate per Pod Measures the number of requests per pod to evaluate traffic distribution. Uneven request rates

may signal load-balancing inefficiencies.

Load Balancer Request Distribution Analyzes how requests are distributed across load balancers. Skewed distribution can indicate

misconfigurations, affecting service responsiveness.

Network I/O Monitors network throughput and data transfer rates across nodes and services. Helps identify

potential network bottlenecks impacting scalability and performance.

Key autoscaling metrics

Troubleshooting Kubernetes Environments: Shifting Gears on your Journey to Digital Resilience | Splunk 13

Managing Kubernetes in
multicloud environments

CHALLENGE 3

Navigating multicloud Kubernetes:
Different roads, same destination

Imagine renting cars in different countries. One has the

steering wheel on the other side that you are accustomed to,

another uses a different fuel type, and the rules of the road,

such as speed limits, signage, and driving customs, are slightly

different, but you still need to drive safely and reach your

destination efficiently.

Managing Kubernetes across Amazon Web Services (AWS),

Microsoft Azure, and Google Cloud Platform (GCP) presents

a similar challenge: each cloud provider has different

configurations, autoscaling behaviors, and security models,

yet teams must ensure consistency and reliability across

all environments.

Organizations increasingly adopt multicloud (and hybrid)

Kubernetes architectures to improve digital resilience —

ensuring high availability, avoiding vendor lock-in, and

optimizing regional performance. However, this flexibility

introduces new challenges in monitoring, scaling, and

security that can overwhelm traditional IT operations.

Troubleshooting Kubernetes Environments: Shifting Gears on your Journey to Digital Resilience | Splunk 13

Troubleshooting Kubernetes Environments: Shifting Gears on your Journey to Digital Resilience | Splunk 14

The problem
Running Kubernetes in a multicloud environment introduces
multiple layers of complexity that single-cloud and/or non-
orchestrated clustered deployments don’t face. Teams must
navigate differences in networking, security models, and
autoscaling logic while ensuring workloads remain portable
and resilient. Without a unified observability strategy,
maintaining visibility and operational consistency across
disparate cloud platforms becomes an ongoing challenge.

The key is balancing consistency with cloud-specific insight.
Teams need a standardized way to monitor Kubernetes —
while still exposing provider-level differences that influence
workload behavior, performance, and reliability.

•	 Unified visibility must extend beyond cloud providers to
include distributed services within a single cloud provider,
such as cross-account and cross-tenant observability.

•	 Cloud-specific configurations vary across providers,
including security enforcement, API behaviors, and
autoscaling policies, requiring teams to adapt workload
tuning and governance strategies accordingly.

•	 Cloud provider monitoring tools (AWS CloudWatch,
Azure Monitor, GCP Operations Suite) generate
observability telemetry but remain siloed, making it
difficult to correlate deployment interdependencies
across clouds.

•	 Legacy vendor-centric agents and solutions require
engineering teams to learn multiple tools and UIs,
increasing toil and technical debt and reducing
operational efficiency.

•	 Inconsistent telemetry formats and naming conventions
across cloud providers complicate log parsing, metric
correlation, and root cause analysis — especially when
relying on open-source tools or homegrown solutions.

Teams running separate Kubernetes clusters in multiple
clouds struggle with governance, security, and compliance
inconsistencies, requiring additional overhead to maintain
operational standards. Inconsistent monitoring and
observability practices create troubleshooting delays,
unreliable performance metrics, and governance challenges.

Why it’s challenging

•	 Kubernetes observability must be contextually integrated with the
broader business application ecosystem to ensure infrastructure
health is correlated with application performance and user experience.
Multicloud deployments introduce additional context complexity.

•	 Cloud-native monitoring tools are often vendor-specific and
siloed, making it difficult to maintain a unified view — whether for a
single application spanning clouds or separate clusters operating in
different environments.

•	 Disconnected monitoring solutions slow down troubleshooting,
increasing Mean Time to Resolution (MTTR) and operational
inefficiencies.

•	 Security and compliance enforcement varies across cloud providers,
making consistent governance and regulatory adherence difficult.

•	 Different configurations and security models across AWS Elastic
Kubernetes Service (EKS), Google Kubernetes Engine (GKE), and Azure
Kubernetes Service (AKS) create challenges for teams managing either
a single distributed application or independent clusters in each cloud.

•	 Teams running multicloud Kubernetes must manage different
autoscaling behaviors, whether balancing workloads across clouds or
optimizing independent clusters to meet performance demands.

•	 Different cloud providers have varying machine types and
pricing, affecting instance selection, resource allocation, and
performance limits.

Troubleshooting Kubernetes Environments: Shifting Gears on your Journey to Digital Resilience | Splunk 15

Observability insights and best practices
To ensure reliability across multicloud Kubernetes environments,
teams need a unified observability approach that standardizes
monitoring and troubleshooting while enabling contextual correlation
of all components within a business application ecosystem.
Observability must abstract the complexity of multicloud and multi-
tenant Kubernetes deployments — providing unified visibility across
environments — while enabling seamless correlation of logs, metrics,
and traces independent of the cloud provider.

•	 Unify observability across cloud providers to correlate telemetry
and quickly pinpoint cross-cloud issues like application bugs,
security-related problems, or networking failures.

•	 Embrace and leverage OpenTelemetry to collect, process,
and standardize metrics, logs, and traces across multicloud
environments, enabling seamless data export and vendor-agnostic
analysis.

•	 Use service dependency mapping and distributed tracing to track
latency, detect cross-cloud bottlenecks, and maintain consistent
application performance across providers.

•	 Integrate cloud provider telemetry data (e.g., AWS CloudWatch,
Azure Monitor, GPC Operations Suite) into your observability
strategy to ensure complete visibility when leveraging these
Kubernetes services.

•	 Standardize metric names and adopt tagging and annotations
across cloud providers to enrich observability telemetry with
business context.

•	 Continuously monitor workload performance variations between
cloud providers to optimize resource efficiency, balancing costs,
latency, and compute power across environments.

•	 Analyze deployment failures and rollback trends to detect API
mismatches, configuration drift, and cloud-specific performance
regressions — leveraging CI/CD tools for automated resolution.

•	 Monitor autoscaling efficiency across cloud providers to detect
under- or over-provisioning, ensuring optimal resource usage and
cost efficiency while aligning with Kubernetes HPA/VPA and cloud-
native scaling policies.

Unified observability equips teams with the insights to operate
Kubernetes smoothly across any cloud environment — just like an
experienced driver can confidently navigate any car in any country,
seamlessly convert MPH to KPH, and understand the essential
controls and regulations.

Whether managing workloads across multiple providers or
optimizing independent clusters, a well-structured unified
observability solution ensures teams maintain visibility, efficiency,
and performance independent of the underlying provider.

ON-RAMP TO LEARN MORE:

Monitoring Amazon Elastic Kubernetes Service (EKS)

https://community.splunk.com/t5/Community-Blog/Monitoring-Amazon-Elastic-Kubernetes-Service-EKS/ba-p/704876

Troubleshooting Kubernetes Environments: Shifting Gears on your Journey to Digital Resilience | Splunk 16

Category Metric Description and Details

Cross-cloud Performance Service Mesh Latency Tracks the latency introduced by service mesh implementations across clouds.

Increased latency can signal inefficient routing, misconfigurations, or network congestion.

API Server Request Latency
across Clusters

Monitors the response time of API server requests across different clusters. High latency

can indicate communication inefficiencies, version mismatches, network bottlenecks, or

authentication issues.

Resource and Configuration
Monitoring

Node Availability and Health per
Cloud Provider

Evaluates node availability and health within each cloud provider’s environment. Helps ensure

clusters are running optimally and detect cloud-specific outages or capacity constraints.

Storage, IOPS and Throughput Measures storage, input/output operations, and data transfer rates across cloud platforms.

Ensures storage throughput, IOPS, and data transfer rates are performing adequately.

Security and Audit
Monitoring

Audit logs and security events Captures security-related events and audit logs across cloud environments. Helps identify

suspicious activity, compliance violations, or configuration drift.

API request failures and
unauthorized access attempts

Tracks API request failures and unauthorized access attempts across clusters. Helps detect

potential security breaches, misconfigurations, or failed authentication policies.

Key multicloud
monitoring metrics

Troubleshooting Kubernetes Environments: Shifting Gears on your Journey to Digital Resilience | Splunk 17

Detecting and resolving resource
pressure in Kubernetes clusters

CHALLENGE 4

The overheating engine problem

Your car’s cooling system keeps engine temperatures stable, preventing

breakdowns. But what happens if it fails? An overheated engine can cause

cascading failures — damaging the radiator, warping the cylinder heads,

and even leading to complete engine failure. Similarly, unchecked CPU

and memory pressure in Kubernetes can trigger pod evictions, resource

starvation, and severe performance degradation, which can disrupt

workloads and impact system stability.

Proactive monitoring allows engineers to detect early warning signs,

preventing degraded performance and instability. In Kubernetes

environments, where workloads shift constantly, even small inefficiencies

in resource requests and limits can create ripple effects. Without timely

insight into how CPU and memory are used, teams often struggle to

maintain balance — some applications may be over-provisioned, while

others are left starved for resources. These mismatches can lead to

unnecessary scaling, increased costs, and performance

issues that are difficult to trace until it’s too late.

Troubleshooting Kubernetes Environments: Shifting Gears on your Journey to Digital Resilience | Splunk 17

Troubleshooting Kubernetes Environments: Shifting Gears on your Journey to Digital Resilience | Splunk 18

The problem
Teams build Kubernetes clusters to manage workloads dynamically,
but resource pressure remains a persistent challenge. Inefficient
resource allocation, often caused by misconfigured requests
and limits or unbalanced scaling policies, can lead to escalating
contention, affecting multiple applications running in the same
cluster. As CPU and memory thresholds are exceeded, workloads
may experience throttling, evictions, or degraded performance,
especially under peak demand.

•	 Nodes under resource pressure experience CPU throttling and
pod evictions. At the same time, pods with misconfigured resource
requests or limits can suffer from resource starvation or trigger
inefficient autoscaling behavior.

•	 Dynamic workload shifts, such as scaling events or node
rescheduling, can lead to imbalanced resource consumption.
This not only degrades application performance but also
increases unnecessary cloud costs.

•	 Complex Kubernetes configurations may result in excessive
resource use and misallocations.

•	 Lack of real-time visibility into usage and capacity thresholds
forces teams to react to failures instead of preventing them.

•	 Identifying bottlenecks in complex environments is difficult,
especially when multiple workloads compete for shared resources
like CPU, memory, and network bandwidth.

Without clear visibility into what’s driving resource pressure —
whether it’s misconfigured requests, workload contention, or node-
level constraints — teams are often forced to make blind adjustments
to resource limits or autoscaling configurations. These reactive
changes may temporarily ease symptoms but rarely address the root
cause, leading to recurring performance bottlenecks that could have
been prevented through better data and signal-driven insights.

Why it’s challenging

•	 Failure to proactively monitor cluster health and
capacity limits leads to sudden failures.

•	 Ignoring early signs of resource exhaustion causes
reactive scaling instead of strategic allocation.

•	 Misconfigured requests and limits that result in
inefficient resource distribution.

•	 The “Noisy Neighbor” effect comes into play where
some workloads consume excessive resources,
starving others.

•	 Failing external services can trigger excessive retries
or stalled processes within Kubernetes workloads,
increasing CPU and memory usage and contributing to
overall cluster resource strain.

Troubleshooting Kubernetes Environments: Shifting Gears on your Journey to Digital Resilience | Splunk 19

Observability insights and best practices
Observability gives engineers real-time insights into resource
consumption, workload contention, and early indicators of
performance issues before they escalate into failures. Without this
visibility, teams are left responding to symptoms instead of resolving
root causes, often resulting in recurring performance or scaling
inefficiencies that drain time, budget, and team focus.

By leveraging observability, engineers can fine-tune resource
allocations, optimize autoscaling strategies, and prevent the
Kubernetes equivalent of an overheating radiator where unchecked
pressure builds until it causes cascading failures across workloads
and services.

•	 Leverage real-time cluster observability to detect and resolve
resource bottlenecks before workloads fail.

•	 Monitor eviction metrics and correlate them with CPU/memory
saturation to identify imbalanced resource allocation.

•	 Track the impact of failing external dependencies by monitoring
increases in CPU, memory, or wait times within affected workloads,
helping identify when resource pressure stems from outside
the cluster.

•	 Understand the correlation of resource utilization to end-user
impact to avoid overreacting to high usage and instead focus on
the moments that affect customer experience.

•	 Analyze failed autoscaling events to optimize Horizontal Pod
Autoscaler (HPA) thresholds and prevent resource gaps.

•	 Implement dynamic resource allocation strategies, adjusting pod
requests based on historical usage trends.

•	 Correlate pod restarts, CPU throttling, and eviction
patterns to diagnose whether resource pressure is caused by
workload contention, misconfigured requests, or underlying
node constraints.

Just as a car’s cooling system prevents overheating by regulating
engine temperature, Kubernetes observability provides engineers
with tools to detect and address resource pressure before
workloads overheat. By continuously monitoring CPU and memory
allocation, engineers can fine-tune resource distribution, optimize
autoscaling strategies, and keep clusters running smoothly under
fluctuating demand — preventing failures and their associated brand
and financial costs before they cause major disruptions.

ON-RAMP TO LEARN MORE:

Detect and Resolve Issues in a Kubernetes Environment

https://community.splunk.com/t5/Community-Blog/Detect-and-Resolve-Issues-in-a-Kubernetes-Environment/ba-p/694350

Troubleshooting Kubernetes Environments: Shifting Gears on your Journey to Digital Resilience | Splunk 20

Category Metric Description and Details

Pod and
Container Level

Pod Evictions and Pending
Pod Counts

Tracks the number of pods evicted due to resource pressure and those still pending scheduling. High counts indicate

insufficient capacity or workload contention.

Restart Counts Measures how frequently pods restart due to crashes or resource exhaustion. Persistent restarts signal instability or

misconfigured resource limits.

Containers
withoutResource Limits

Identifies containers running without defined CPU/memory limits. Lack of constraints can lead to excessive resource

consumption and ‘noisy neighbor’ issues.

Node Level Node CPU/Memory/Disk
Pressure

Measures pressure on CPU, memory, and disk at the node level. Persistent high usage may lead to degraded

performance and potential node failures.

Cluster Level Resource Quotas Defines the maximum allowable resource allocation for namespaces or workloads. Breaching quotas may cause pod

failures and service disruptions.

Cluster Autoscaler Event
Logs

Logs scaling decisions made by the Cluster Autoscaler. Analyzing events helps identify scaling inefficiencies and

bottlenecks in resource provisioning.

Daemonsets at Deficit/
Restart Counts

Tracks whether daemonsets (essential system-level services) have enough available nodes to run properly and how

frequently they restart. A deficit or frequent restarts indicate constraints, node instability, misconfigurations, or

resource exhaustion.

Network Latency Monitors delays in processing requests due to resource bottlenecks. Increased latency often signals overloaded

nodes or insufficient scaling.

Throughput Measures the rate of successful requests per second. Low throughput can indicate resource constraints affecting

service responsiveness.

Errors Tracks failed network requests, connection timeouts, and dropped packets. Persistent errors may indicate network

congestion, misconfigured routing, or service communication failures.

Network utilization Tracks overall network traffic and bandwidth usage. High network utilization can impact communication between

services and degrade application responsiveness.

Key resource pressure metrics

Troubleshooting Kubernetes Environments: Shifting Gears on your Journey to Digital Resilience | Splunk 21

From dashboard warnings
to true diagnostics
Driving a car is, honestly, quite a challenge. You must pay attention to
literally everything. From your dashboard displaying urgent lights or
no warning lights at all to an overheating engine to learning the laws
of the road, you definitely have a lot to think about. It all boils down to
getting as much intelligent, contextual, and accurate information as
possible when it truly matters.

Apart from relying on experience, you might not know exactly
why the engine is failing, just that something’s wrong. If you
want real answers, you need a diagnostic tool that goes beyond

“it’s broken” — pinpointing exactly which part or system is failing
and why.

Kubernetes environments are the same way. Deployments emit
vast amounts of telemetry data and you definitely do not want to
be repeatedly looking for the same needle in the needle stack, over
and over. You need effective observability to trace issues across
clusters, correlate performance signals, and provide actionable
insights — ideally positioning your team to fix problems before they
impact users.

Throughout this e-book, we’ve explored the complexities of
troubleshooting Kubernetes environments, from diagnosing
scaling issues and resource constraints to managing multicloud
deployments. Each of these challenges reinforces a central theme:
a strong observability strategy is critical to troubleshooting
Kubernetes environments successfully.

To provide effective Kubernetes observability, you’ll need to address
several key priorities: multicloud, correlation of telemetry to business
health, AI insights, and more.

Observability must support multicloud Kubernetes deployments
and distributions while maintaining vendor-agnostic flexibility.
Solutions like OpenTelemetry help eliminate instrumentation
toil by consolidating metrics, logs, and traces into a single
framework — simplifying telemetry collection and enabling
consistent observability across Kubernetes environments. By
correlating real-time telemetry with business application health,
teams can perform end-to-end troubleshooting, optimizing both
infrastructure performance and user experience.

AI-guided insights surface anomalies, identifying patterns, and
accelerating root cause analysis across your specific Kubernetes
environments. Context-rich logging and telemetry correlation help
engineers quickly pinpoint root causes — maintaining critical links
across application traces (the path a request takes through service),
Kubernetes components, and infrastructure layers to enable true
end-to-end troubleshooting. Additionally, observability must scale
with your environment, offering visibility across clusters, cloud
providers, and hybrid deployments.

Troubleshooting Kubernetes Environments: Shifting Gears on your Journey to Digital Resilience | Splunk 22

High-level troubleshooting guidance
To efficiently troubleshoot Kubernetes environments, teams need
a structured approach that addresses the entire technology stack,
from nodes to applications:

•	 Deploy comprehensive observability solutions that integrate
infrastructure monitoring, APM, and logging capabilities.

•	 Identify the problem scope (node, pod, service layer, network) to
narrow down root causes quickly.

•	 Train teams on observability tools to improve troubleshooting
speed and accuracy.

•	 Detect failure trends before they impact production by
continuously analyzing key performance indicators.

•	 Conduct proactive resource allocation using historical resource
utilization trends to prevent resource exhaustion, optimize scaling
strategies, and mitigate performance bottlenecks.

•	 Surface and analyze anomalies in key metrics to detect early
warning signs of instability, performance degradation, or resource
contention before they impact service reliability.

•	 Check for misconfigurations and dependencies that may be
contributing to performance degradation.

•	 Utilize cloud-native observability tools designed for
microservices environments to correlate logs, metrics, and
traces, enabling effective root cause analysis across distributed
Kubernetes workloads.

•	 Use AI-driven insights and machine learning-powered anomaly
detection to minimize reliance on tribal knowledge, surface hidden
patterns, and accelerate root cause analysis.

•	 Implement vendor-neutral instrumentation with OpenTelemetry
to unify metrics, logs, and traces across clusters and clouds,
ensuring consistent visibility and preventing vendor lock-in.

•	 Ensure end-to-end observability in multicloud Kubernetes
(independent of where you deploy your Kubernetes workloads) by
correlating performance data, detecting cross-cloud issues, and
streamlining troubleshooting.

Observability transforms troubleshooting in Kubernetes environments
from a reactive, time-consuming process to a strategy that ensures
performance, efficiency, and ultimately, digital resiliency.

Just as modern car diagnostics go beyond simple dashboard
warnings, observability equips teams with real-time, actionable
insights to understand what’s happening under the hood and
address issues with precision. Observability replaces guesswork
with clarity, enabling engineers to troubleshoot faster and keep
Kubernetes environments running at peak performance.

Splunk, Splunk> and Turn Data Into Doing are trademarks and registered trademarks of Splunk LLC. in the
United States and other countries. All other brand names, product names or trademarks belong to their
respective owners. © 2025 Splunk LLC. All rights reserved.

25_CMP_ebook_troubleshooting-kubernetes-environments_v9

Learn More About
Kubernetes Observability
Embark on your Kubernetes Road Trip

•	 Explore Splunk Kubernetes Monitoring

•	 Download the Splunk Kubernetes Monitoring Data Sheet

•	 Join the Splunk Community for Kubernetes

•	 Accelerate data onboarding in Kubernetes

https://www.facebook.com/splunk
https://www.instagram.com/splunk/
https://www.linkedin.com/company/splunk
https://twitter.com/splunk
https://www.youtube.com/user/splunkvideos
https://www.splunk.com/en_us/solutions/kubernetes-monitoring.html
https://www.splunk.com/en_us/resources/splunk-kubernetes-monitoring.html
https://community.splunk.com/t5/tag/kubernetes/tg-p/board-id/Community-Blog
https://www.splunk.com/en_us/resources/splunk-observability-kubernetes-accelerator.html

