
The Essential Guide to

Observability for Cloud
Native Environments
How to use observability to conquer complexity
in cloud native environments

How are you managing
the increasing
complexity of your
distributed systems?
Embracing observability is a crucial step
in a cloud-native journey.

Table of contents

Introduction.. 3

Understanding the challenges of cloud native.. 4

Increased complexity in distributed systems..4

Difficulty identifying, troubleshooting and resolving issues...4

The balancing act: system resilience vs. innovation..4

The promise of observability.. 5

Defining observability and its role in modern engineering practices..............................5

Key components of observability: metrics, traces and logs...5

Benefits of adopting Observability practices in cloud native environments..............5

Implementing observability in cloud native environments........................... 6

Choosing the right observability tools and frameworks..6

Instrumenting applications for observability... 7

A single, fluid UI to troubleshoot every issue with confidence.. 7

Scaling observability to meet growth, while maintaining cost controls........................ 7

Using observability to overcome common challenges................................... 8

Proactively detecting problems, and real-time issue detection..................................... 8

Centralized logging and log analysis for comprehensive system insights................. 8

Advanced analytics and anomaly detection for rapid problem identification......... 8

Distributed tracing and service dependency mapping for root cause analysis...... 8

Collaborative incident response and post-incident analysis... 9

Real-user and synthetic monitoring... 9

Case studies: Examining success from who’s doing it right.........................10

Rappi... 10

Dana ... 10

Remember three things:.. 11

Checklist when considering observability solutions in RFPs......................12

Introduction
The cloud is here. Gone are the days of quarterly feature updates and waterfall

deployments from IT and development teams. Increasingly, modern digital

businesses rely on cloud native environments to deliver value to customers

faster. Amazon, Netflix and Uber are the model for modern digital business.

They have used the cloud to disrupt their industry and leave competitors

in the dust.

However, while being cloud native helps a business scale, increase reliability

and performance, and improve feature velocity, there are new challenges that

engineering teams must face. Complexity, system performance and cost are

among the top issues engineering leadership struggle with. When a customer-

facing issue occurs, scoping and identifying the problem may require time

and people to understand the hundreds of dependencies, APIs, serverless

functions or third party components in a modern microservice architecture.

One service that lacks proper scalability or resource optimization, or that

is experiencing latency or network connectivity problems, can impact

another service and ultimately customers. Cost concerns from automatically

scaling infrastructure or inefficient utilization of infrastructure are another

frequent challenge.

Why observability is a must-
have to operate distributed
systems
Engineering teams with cloud native environments rely on modern

observability solutions to provide visibility across their environment, optimize

system performance and help quickly troubleshoot problems. While many

teams use observability when problems occur, teams increasingly use

observability to proactively catch problems and ensure they deliver satisfying

reliability and performance earlier in the development lifecycle.

Observability can even integrate with a CI/CD system to catch issues before

they go into production at all. Additionally, as macroeconomic conditions

increase pressure on budget decisions, observability solutions provide

visibility and governance to help engineering leaders control the cost of cloud

infrastructure and data usage as a system scales.

Figure 1: Cloud-native design

A
P

I G
atew

ay

Event B
us

(P
ub

lish/S
ub

scrib
e C

hannel)
Identity microservice
(STS+users)

Relational database

Catalog microservice

Relational database

Ordering microservice

Relational database

Basket microservice

Redis cache

Marketing microservice

NoSQL database

Locations microservice

NoSQL database

Client apps

Traditional
Web app

HTML

SPA Web app

TypeScript/
Angular 2

Mobile app

Docker Host

WebApp

3

Understanding
the challenges of
cloud native
Cloud native environments offer benefits galore, like faster time to market

and improved reliability — but they also introduce complexities that make

it difficult to monitor the overall health and performance of a system.

Engineering leaders can also feel squeezed between prioritizing system

resilience and innovation as they work to both optimize customer experience

and drive innovation.

Increased complexity in distributed systems
While cloud native environments help businesses achieve better time to

market and increased reliability, they come with challenges. Microservices,

containers and orchestration platforms add an explosion of complexity to a

system, making it difficult to get a clear picture of health and performance of

a system as a whole. While distributed systems enable applications to scale

resources effectively and automatically, there is more to monitor and react to.

To put it simply, you can’t predict what will go wrong, or how one new change

will impact interconnected system components. Traditional monitoring built

for a time of monolithic applications, on-prem infrastructure, and static web

pages often falls short at providing an entire picture of infrastructure health,

application performance, end user experience, and network behavior. This

can lead to blindspots for teams who need to understand if new changes have

impacted system performance.

Difficulty identifying, troubleshooting
and resolving issues
As an engineer deploys new code, configurations or updates to their specific

service, it’s always possible it will negatively impact another portion of the

system. The result can be new slowness, errors or anomalies that degrade

customer experience or business outcomes. Alerting, isolating and resolving

issues across cloud native environments can be daunting. With numerous

services communicating with each other, pinpointing the root cause of

problems becomes time-consuming and complex. No single engineer has

context to quickly troubleshoot problems across the entire system.

Traditional monitoring solutions that sample data — or offer piecemeal

visibility across distributed systems — can lead to longer delays in resolving

an issue, and require more people to understand what’s wrong. Additionally,

many legacy monitoring systems don’t provide visibility into the user’s

experience. Given how much of modern applications run in browser, this can

be a critical mistake.

The balancing act: system resilience
vs. innovation
Heads of engineering often must choose between system resilience and

driving new innovation. While delivering new features and functionality

to the market is necessary to grow a business, every change brings risk to

system resilience. While most monitoring solutions provide the basics for

alerting and availability, uptime alone is no longer sufficient for customer

facing applications.

Prioritizing what to fix first reduces burnout and makes sure that customer

experience and business metrics are kept as healthy as possible.

Figure 2: Monolithic vs Microservice Architectures

Microservices Architectures

Loosely coupled microservices
and serverless functions

Monolith Architectures

Tightly coupled apps and slow
deployment cycles

4

The promise of
observability
Defining observability and its role in modern
engineering practices
Observability refers to the ability to gain insight into the internal workings

of a system by observing its outputs and behaviors. In modern engineering

practices, observability has become a crucial concept as it goes beyond

traditional monitoring by emphasizing the holistic understanding of complex

cloud native environments. It allows engineers to gain real-time visibility into

the performance, health, and behavior of distributed systems, enabling them

to identify and resolve issues proactively.

Key components of observability: metrics,
traces and logs
Observability is achieved through the combination of three essential

components: metrics, traces and logs. Metrics focus on quantitative

measurements, such as response times, error rates and resource utilization,

enabling performance analysis and trend identification. Metrics are also used

to identify if a problem exists in the system.

Tracing follows the path of a request through various services, offering insights

into end-to-end system behavior and dependencies. This lets an operator

determine where in a complex system the problem is.

Finally, logging captures detailed event logs and system-generated messages,

providing a historical record of system behavior and enabling the operators to

determine what the problem was and to ultimately resolve it.

Benefits of adopting Observability practices in
cloud native environments
Adopting observability practices in cloud native environments brings

numerous benefits. Providing teams with a clear understanding of system

performance, especially for troubleshooting, is job one. Especially during

incident response, observability can increase mean time to detect (MTTD) and

mean time to resolution (MTTR). Additionally, observability can help optimize

performance across services and the end-user experience. In general,

observability is critical in helping IT and engineering teams make decisions

based on system data, helping to foster continuous improvement.

By collecting and analyzing data from metrics, traces and logs, and combining

that with data from synthetic and real-user monitoring platforms, engineers

gain valuable insights into system behavior, user interactions and performance

patterns. These insights drive evidence-based decisions, enabling teams

to prioritize efforts, allocate resources effectively and optimize system

performance. Furthermore, by continuously monitoring and analyzing

observability data, teams can identify areas for improvement, implement

iterative changes and drive ongoing enhancements to the system.

Payment
Services

Credit Bureau
API

Account
Services

Investment
Services

Mortgage
Services

Transfer Funds

180ms

3.8s

place_transfer

transfer_submitted

tr
an

sf
er_

com
ple

te

Google

Docker
Host

IBM

Azure

Salesforce

AWS

SAP

Figure 3: Example of transactions from a banking app

5

Scalable Cost
Controls

Open Standards
Data Collection

Business
Context

Single,
Fluid UI

(Metrics,
Traces, Logs)

AI

Implementing
observability in cloud
native environments
Choosing the right observability tools
and frameworks
Whether an application began in the cloud and uses microservices, serverless

frameworks and Kubernetes, or if its engineers are in the process of breaking

down monolithic apps into smaller services, it’s important to choose a

solution that meets technological needs and provides additional business

benefits. Some themes and questions to guide evaluation of Observability

solutions include:

•	 OpenTelemetry support: Does the solution offer native support for

open standards?

•	 Data scale support: Can the solution ingest the volume of telemetry

associated with my entire environment and tech stack?

•	 Ease of use: Can engineers get started easily, understand how system

components perform, and receive recommendations on potential root

cause based on real time analysis of complete data sets?

•	 Team efficiency: Can teams troubleshoot with one single solution, in a

timely manner? Are the necessary components of the system in a single UI,

that integrates with their existing telemetry data and leverages AI?

•	 Cost controls: Can engineering teams measure when scaling infrastructure

significantly impacts monitoring spend? Can the cost of the observability

platform itself be predicted and controlled?

•	 Business context: Can engineering teams easily add tags and custom

measurements to their telemetry data, and align service performance to

business results? Can business results be included as alert sources?

6

Instrumenting applications for observability
Thorough, and hopefully pain free, instrumentation is another consideration.

Modern teams are using OpenTelemetry to standardize their measurements.

Any team will need to incorporate logging libraries, metrics collectors, and

distributed tracing agents within their code base. This process requires a

lot of work, so should only be done once. This is the main drive behind the

adoption of OpenTelemetry — by using OpenTelemetry, data can be sent to

any observability platform (or even to multiple platforms,) providing maximum

flexibility. OpenTelemetry even supports automatic instrumentations for

popular languages and frameworks, speeding this process up. Do it once, and

be future-proof for the next big thing in observability.

A single, fluid UI to troubleshoot every issue
with confidence
Job one for an observability solution is to provide a seamless troubleshooting

experience in an easy-to-understand UI, at scale. Ideally, effective

troubleshooting of cloud native environments often begins with an alert from

abnormally performing metrics, an engineer uses trace data to isolate specific

components common in the problem, and uses log data to pinpoint the exact

problem with granularity. Therefore, Observability UI’s must come with:

1.	 Dynamic service maps to visualize where a problem exists.

2.	 AI to suggest where the biggest problems or root cause exists.

3.	 A fluid troubleshooting experience where each click provides

additional context.

4.	 The ability to easily add custom business metrics and tags.

Engineering teams using multiple monitoring tools must reconcile data by

jumping across separate tools to reconcile data from their system.

Scaling observability to meet growth, while
maintaining cost controls
Any monitoring solution will say they scale, but as applications scale to meet

global demand, rough edges with monitoring or observability platforms can

shine through. A well-architected observability solution will: a) scale alongside

the demand from its customers (your business) without dropping valuable

data, b) maintain performance at scale, continuing to update dashboards and

services maps in seconds, despite demand, and c) do this in a way that has

predictable costs, not enormous bills and surprise overages.

7

Using observability
to overcome common
challenges

Proactively detecting problems, and real-
time issue detection

Real-time monitoring and alerting are essential components of modern

observability solutions. By continuously monitoring system metrics, traces and

logs in real time, organizations can proactively detect and address potential

issues before they impact user experience or system performance.

Modern components such as serverless functions can have lifetimes

measured in milliseconds. Waiting five minutes for alerts simply doesn’t work

anymore. Automated alerts and notifications enable engineering teams to

respond swiftly and take remedial actions, minimizing downtime and ensuring

optimal system health.

Centralized logging and log analysis for
comprehensive system insights

Centralized logging plays a crucial role in finding the root cause of problems

and gaining comprehensive insights into complex distributed systems. By

aggregating logs from various components and services, organizations can

analyze patterns, detect anomalies and troubleshoot issues more effectively.

Sophisticated log analysis tools enable powerful searching, filtering and

correlation capabilities, allowing VPs of engineering and their teams to gain

deeper visibility into the system’s behavior and uncover valuable insights.

Advanced analytics and anomaly detection
for rapid problem identification

Modern observability solutions use advanced analytics and anomaly

detection techniques to identify and highlight abnormal system behavior. By

employing machine learning algorithms and statistical models, these solutions

can detect deviations from normal patterns, identify potential issues, and alert

engineering teams. This enables faster problem identification and accelerates

the mean time to resolution (MTTR) and ensures adherence to service-level

objectives (SLOs) by focusing efforts on critical areas that require attention.

Distributed tracing and service dependency
mapping for root cause analysis

Distributed tracing provides end-to-end visibility into requests flowing

through complex, distributed systems. By tracing the path of requests across

services and capturing timing and contextual information, VPs of engineering

can understand the dependencies and performance bottlenecks within their

environment.

Service dependency mapping visualizes these relationships — allowing for

better root cause analysis, performance optimization and troubleshooting

of system-wide issues. As the application changes and new services are

deployed and old ones are removed, a dynamic service map makes sure that

issues are pinpointed quickly every time.

 “We replaced our monolith with microservices
so that every outage could be more like a
murder mystery.”

 — �Corey Watson, former head of observability at Stripe

 “We had built a big transactional engine, but
it was hard to troubleshoot these systems
when something went wrong.”

 — �Erik Swan, former CTO and co-founder of Splunk

8

Collaborative incident response and post-
incident analysis

Modern observability solutions facilitate collaborative incident response and

post-incident analysis, enabling effective communication and knowledge

sharing among engineering teams. With shared visibility into system metrics,

traces and logs, teams can collaborate in real-time during incident response,

diagnose issues collectively, and implement effective mitigation strategies.

Post-incident analysis helps identify the root causes, capture lessons learned

and improve overall system resilience and reliability.

Real-user and synthetic
monitoring

Increasingly, organizations are taking a customer-centric approach to

monitoring with digital experience monitoring, or the combination of RUM (real

user monitoring) and synthetic monitoring. RUM data measures and visualizes

your actual user experience, and can help engineering teams find and fix

customer-facing issues.

Synthetic data, on the other hand, can help proactively test user experience

across an entire journey, and proactively find problems before customers

do. Both real-user and synthetic monitoring can be incorporated into metric,

trace, and log data, to further resolve and prioritize end user facing issues.

9

Case studies:
Examining success from who’s doing
it right
Here are some real-world examples of how modern observability

solutions have helped Splunk customers solve complex challenges in

cloud native environments.

Rappi
The Latin American delivery service processes nearly nine million orders

a month as it grows its business across the region. Their engineering team

manages more than 1,000 microservices, 6,000 hosts and 15,000 containers.

“We’re all attuned to the potential business impact of downtime, so we’re

grateful that Splunk observability helps us be proactive about reliability and

resilience with end-to-end visibility into our environment, says Jose Felipe

Lopez, engineering manager for Rappi.

Dana
Dana has 135 million Indonesians using their digital payment platform. They’ve

experienced 150% growth in annual transactions, making them one of the

most popular e-wallet providers in Indonesia. Dana used legacy monitoring

solutions, including homegrown tools, which resulted in blind spots across

their environments. Troubleshooting performance issues also required an

arduous manual process of sifting through application and infrastructure logs.

“Our old data monitoring tool, which included some legacy homegrown

solutions, only gave us eyes into specific problems, without a holistic picture

of the entire environment,” says Norman Sasono, chief technology officer.

“Splunk gives us both the depth and breadth of visibility we need, helping us

reduce gaps from dropped transactions.”

10

https://www.splunk.com/en_us/customers/success-stories/rappi.html
https://www.splunk.com/en_us/customers/success-stories/dana.html

Remember
three things:
1.	 VPs of engineering face new challenges when managing

cloud native environments.

In today’s cloud native environments, engineering leadership faces

numerous challenges brought about by the increasing complexity of

distributed systems. From ensuring system stability to driving innovation,

they must navigate a landscape that demands seamless performance,

scalability and reliability. The intricate nature of these environments poses

significant hurdles in terms of visibility, troubleshooting and efficient

resource utilization.

2.	 Observability practices are vital to ensure system security
and reliability.

Embracing observability practices is crucial for teams operating cloud

native environments. Observability offers a powerful toolkit to gain

comprehensive insights into system behavior, enabling proactive detection

of issues, rapid troubleshooting and informed decision making.

Observability empowers engineering teams to understand the intricacies

of their complex systems, facilitating efficient incident response and

fostering a culture of continuous improvement.

3.	 Observability is a journey — and you should start today.

As cloud native environments continue to evolve, the adoption of

observability becomes increasingly essential. It is a game changer that

equips engineering leadership with the tools and methodologies to tame

the complexity of their distributed systems. By embracing observability,

they can harness the full potential of modern engineering practices,

overcome challenges, and drive innovation with confidence. It is an

ongoing journey that requires continuous exploration, experimentation

and collaboration among teams.

11

Checklist when considering observability
solutions in RFPs
Checklist for Observability Solutions Vendor A Vendor B Vendor C

Ability to ingest/analyze/visualize data volume at scale?

OpenTelemetry-based Instrumentation

Real time monitoring and alerting

Scalability and performance

Distributed tracing and automatic service dependency mapping

Centralized logging and log analysis

Advanced analytics and anomaly detection

Collaborative incident response and post-incident analysis

Integration and compatibility with existing systems

Customizability for business metrics and metrics, traces, logs

Integrated support for real-user monitoring and synthetic monitoring

12

Splunk, Splunk> and Turn Data Into Doing are trademarks and registered
trademarks of Splunk Inc. in the United States and other countries. All other
brand names, product names or trademarks belong to their respective owners.
© 2023 Splunk Inc. All rights reserved.

23-265351-Splunk-Ess Guide to O11y for Cloud Native Environments-EB-106

Learn More.
Solve problems in seconds with the only full-stack,
analytics-powered observability solution.

Schedule Demo

https://www.splunk.com/en_us/about-splunk/contact-us.html

