The Essential Guide to

Observability for Cloud
Native Environments

How to use observability to conquer complexity
in cloud native environments

How are you managing
the increasing
complexity of your
distributed systems?

Embracing observability is a crucial step
in a cloud-native journey.

Table of contents

Introduction 3
Understanding the challenges of cloud native 4
Increased complexity in distributed systems 4
Difficulty identifying, troubleshooting and resolving issues 4
The balancing act: system resilience vs. innovation 4
The promise of observability 5
Defining observability and its role in modern engineering practices........ 5
Key components of observability: metrics, traces and logs 5
Benefits of adopting Observability practices in cloud native environments............. 5
Implementing observability in cloud native environments.........ccccceeuueee. 6
Choosing the right observability tools and frameworks 6
Instrumenting applications for observability 7
A single, fluid Ul to troubleshoot every issue with confidence.....reeisneceinnn 7
Scaling observability to meet growth, while maintaining cost controls........cccuu. 7
Using observability to overcome common challenges 8

% Proactively detecting problems, and real-time issue detectio

Centralized logging and log analysis for comprehensive system insights
Advanced analytics and anomaly detection for rapid problem identification
Distributed tracing and service dependency mapping for root cause analysis
Collaborative incident response and post-incident analysis

Real-user and synthetic monitoring

Case studies: Examining success from who’s doing it right........ccceeeueeee 10
Rappi 10
Dana 10

Remember three things: 1

Checklist when considering observability solutions in RFPs..................... 12

Introduction

The cloud is here. Gone are the days of quarterly feature updates and waterfall
deployments from IT and development teams. Increasingly, modern digital
businesses rely on cloud native environments to deliver value to customers
faster. Amazon, Netflix and Uber are the model for modern digital business.
They have used the cloud to disrupt their industry and leave competitors

in the dust.

However, while being cloud native helps a business scale, increase reliability
and performance, and improve feature velocity, there are new challenges that
engineering teams must face. Complexity, system performance and cost are
among the top issues engineering leadership struggle with. When a customer-
facing issue occurs, scoping and identifying the problem may require time
and people to understand the hundreds of dependencies, APls, serverless
functions or third party components in a modern microservice architecture.

One service that lacks proper scalability or resource optimization, or that

is experiencing latency or network connectivity problems, can impact
another service and ultimately customers. Cost concerns from automatically
scaling infrastructure or inefficient utilization of infrastructure are another

frequent challenge.

- r— - - - - - - - -/ — — —/— /"
Client apps Docker Host r— - — — — — = 1
PP | | Identity microservice | |
—p (STS+users) <>
| Relational database I |
Mobile app £ b= = = = = -
r— - - - - - = l
I = I I Catalog microservice I
oo Relational datab -5
I oo || L noationaldatabase -, 2 I
o
= Fordermemicrosarice " ENN |
" > Ordering microservice =4
Traditional «—— WebApp — |) |- @ m
Web app 5 _ Relational database 5 3 |
[o =~
HTML & - S o
I [g r : . S =
p— o Basket microservice o o
< > O
I </> I I LRediscache B = |
******* =]
| || Sleliiviie -
SPA Web app »> Marketing microservice
| TypeScript/ [| NoSQL database I
Angular 2 | L= = — — — — - |
T r—— - - - - - = A
Locations microservice
| </> | —>| | |
LNoSQLdatabase ,
|

Figure 1: Cloud-native design

Why observability is a must-
have to operate distributed
systems

Engineering teams with cloud native environments rely on modern
observability solutions to provide visibility across their environment, optimize
system performance and help quickly troubleshoot problems. While many
teams use observability when problems occur, teams increasingly use
observability to proactively catch problems and ensure they deliver satisfying
reliability and performance earlier in the development lifecycle.

Observability can even integrate with a Cl/CD system to catch issues before
they go into production at all. Additionally, as macroeconomic conditions
increase pressure on budget decisions, observability solutions provide
visibility and governance to help engineering leaders control the cost of cloud
infrastructure and data usage as a system scales.

Understanding
the challenges of
cloud native

Cloud native environments offer benefits galore, like faster time to market
and improved reliability — but they also introduce complexities that make

it difficult to monitor the overall health and performance of a system.
Engineering leaders can also feel squeezed between prioritizing system
resilience and innovation as they work to both optimize customer experience
and drive innovation.

Increased complexity in distributed systems

While cloud native environments help businesses achieve better time to
market and increased reliability, they come with challenges. Microservices,
containers and orchestration platforms add an explosion of complexity to a
system, making it difficult to get a clear picture of health and performance of
a system as a whole. While distributed systems enable applications to scale

resources effectively and automatically, there is more to monitor and react to.

To put it simply, you can’t predict what will go wrong, or how one new change
will impact interconnected system components. Traditional monitoring built
for a time of monolithic applications, on-prem infrastructure, and static web
pages often falls short at providing an entire picture of infrastructure health,

Monolith Architectures Microservices Architectures

-’l ..
F] -v.a,-c') e 18
n0.s7 O
oQ S ¢
ao &
O‘Q.vo

o
vQO -5

0

Q)
”

éﬁ

.O
,’O
Q)

.'

Oﬁ‘@o

Tightly coupled apps and slow Loosely coupled microservices
deployment cycles and serverless functions

Figure 2: Monolithic vs Microservice Architectures

application performance, end user experience, and network behavior. This
can lead to blindspots for teams who need to understand if new changes have
impacted system performance.

Difficulty identifying, troubleshooting
and resolving issues

As an engineer deploys new code, configurations or updates to their specific
service, it’s always possible it will negatively impact another portion of the
system. The result can be new slowness, errors or anomalies that degrade
customer experience or business outcomes. Alerting, isolating and resolving
issues across cloud native environments can be daunting. With numerous
services communicating with each other, pinpointing the root cause of
problems becomes time-consuming and complex. No single engineer has
context to quickly troubleshoot problems across the entire system.

Traditional monitoring solutions that sample data — or offer piecemeal
visibility across distributed systems — can lead to longer delays in resolving
an issue, and require more people to understand what’s wrong. Additionally,
many legacy monitoring systems don’t provide visibility into the user’s
experience. Given how much of modern applications run in browser, this can
be a critical mistake.

The balancing act: system resilience
vs. innovation

Heads of engineering often must choose between system resilience and
driving new innovation. While delivering new features and functionality

to the market is necessary to grow a business, every change brings risk to
system resilience. While most monitoring solutions provide the basics for
alerting and availability, uptime alone is no longer sufficient for customer
facing applications.

Prioritizing what to fix first reduces burnout and makes sure that customer
experience and business metrics are kept as healthy as possible.

The promise of
observability

Defining observability and its role in modern
engineering practices

Observability refers to the ability to gain insight into the internal workings

of a system by observing its outputs and behaviors. In modern engineering
practices, observability has become a crucial concept as it goes beyond
traditional monitoring by emphasizing the holistic understanding of complex
cloud native environments. It allows engineers to gain real-time visibility into
the performance, health, and behavior of distributed systems, enabling them
to identify and resolve issues proactively.

Key components of observability: metrics,
traces and logs

Observability is achieved through the combination of three essential
components: metrics, traces and logs. Metrics focus on quantitative
measurements, such as response times, error rates and resource utilization,
enabling performance analysis and trend identification. Metrics are also used
to identify if a problem exists in the system.

Tracing follows the path of a request through various services, offering insights
into end-to-end system behavior and dependencies. This lets an operator
determine where in a complex system the problem is.

Finally, logging captures detailed event logs and system-generated messages,
providing a historical record of system behavior and enabling the operators to
determine what the problem was and to ultimately resolve it.

Benefits of adopting Observability practices in
cloud native environments

Adopting observability practices in cloud native environments brings
numerous benefits. Providing teams with a clear understanding of system
performance, especially for troubleshooting, is job one. Especially during
incident response, observability can increase mean time to detect (MTTD) and
mean time to resolution (MTTR). Additionally, observability can help optimize
performance across services and the end-user experience. In general,
observability is critical in helping IT and engineering teams make decisions
based on system data, helping to foster continuous improvement.

By collecting and analyzing data from metrics, traces and logs, and combining
that with data from synthetic and real-user monitoring platforms, engineers
gain valuable insights into system behavior, user interactions and performance
patterns. These insights drive evidence-based decisions, enabling teams

to prioritize efforts, allocate resources effectively and optimize system
performance. Furthermore, by continuously monitoring and analyzing
observability data, teams can identify areas for improvement, implement
iterative changes and drive ongoing enhancements to the system.

Transfer Funds

Payn?ent —» Salesforce
Services
A o B Azure

Credit Bureau (
API g%@ IBM
L5 go™ 7

Account s

Services Docker AWS‘ Q)
/ VV(AEOOgIe

Investment
Services

-~
Mortgage SAP
- Services

Figure 3: Example of transactions from a banking app

Implementing
observability in cloud
native environments

Choosing the right observability tools
and frameworks

Whether an application began in the cloud and uses microservices, serverless
frameworks and Kubernetes, or if its engineers are in the process of breaking
down monolithic apps into smaller services, it’s important to choose a
solution that meets technological needs and provides additional business
benefits. Some themes and questions to guide evaluation of Observability
solutions include:

- OpenTelemetry support: Does the solution offer native support for
open standards?

- Data scale support: Can the solution ingest the volume of telemetry
associated with my entire environment and tech stack?

- Ease of use: Can engineers get started easily, understand how system
components perform, and receive recommendations on potential root
cause based on real time analysis of complete data sets?

- Team efficiency: Can teams troubleshoot with one single solution, in a
timely manner? Are the necessary components of the system in a single Ul,
that integrates with their existing telemetry data and leverages Al?

- Cost controls: Can engineering teams measure when scaling infrastructure
significantly impacts monitoring spend? Can the cost of the observability
platform itself be predicted and controlled?

- Business context: Can engineering teams easily add tags and custom
measurements to their telemetry data, and align service performance to
business results? Can business results be included as alert sources?

Scalable

&'
Q‘OpenTelemetry

Open Standards

Data Collection

Single,
Fluid Ul

(Metrics,
Traces, Logs)

Business
Context

Cost
Controls

Instrumenting applications for observability

Thorough, and hopefully pain free, instrumentation is another consideration.
Modern teams are using OpenTelemetry to standardize their measurements.
Any team will need to incorporate logging libraries, metrics collectors, and
distributed tracing agents within their code base. This process requires a

lot of work, so should only be done once. This is the main drive behind the
adoption of OpenTelemetry — by using OpenTelemetry, data can be sent to
any observability platform (or even to multiple platforms,) providing maximum
flexibility. OpenTelemetry even supports automatic instrumentations for
popular languages and frameworks, speeding this process up. Do it once, and
be future-proof for the next big thing in observability.

A single, fluid Ul to troubleshoot every issue
with confidence

Job one for an observability solution is to provide a seamless troubleshooting
experience in an easy-to-understand Ul, at scale. Ideally, effective
troubleshooting of cloud native environments often begins with an alert from
abnormally performing metrics, an engineer uses trace data to isolate specific
components common in the problem, and uses log data to pinpoint the exact
problem with granularity. Therefore, Observability Ul’'s must come with:

1. Dynamic service maps to visualize where a problem exists.

2. Altosuggest where the biggest problems or root cause exists.

3. Afluid troubleshooting experience where each click provides
additional context.

4. The ability to easily add custom business metrics and tags.

Engineering teams using multiple monitoring tools must reconcile data by
jumping across separate tools to reconcile data from their system.

Scaling observability to meet growth, while
maintaining cost controls

Any monitoring solution will say they scale, but as applications scale to meet
global demand, rough edges with monitoring or observability platforms can
shine through. A well-architected observability solution will: a) scale alongside
the demand from its customers (your business) without dropping valuable
data, b) maintain performance at scale, continuing to update dashboards and
services maps in seconds, despite demand, and c) do this in a way that has
predictable costs, not enormous bills and surprise overages.

Using observability
to overcome common
challenges

Erl Proactively detecting problems, and real-
Q

time issue detection

Real-time monitoring and alerting are essential components of modern
observability solutions. By continuously monitoring system metrics, traces and
logs in real time, organizations can proactively detect and address potential
issues before they impact user experience or system performance.

Modern components such as serverless functions can have lifetimes
measured in milliseconds. Waiting five minutes for alerts simply doesn’t work
anymore. Automated alerts and notifications enable engineering teams to
respond swiftly and take remedial actions, minimizing downtime and ensuring
optimal system health.

Centralized logging and log analysis for
&

comprehensive system insights

Centralized logging plays a crucial role in finding the root cause of problems
and gaining comprehensive insights into complex distributed systems. By
aggregating logs from various components and services, organizations can
analyze patterns, detect anomalies and troubleshoot issues more effectively.

Sophisticated log analysis tools enable powerful searching, filtering and
correlation capabilities, allowing VPs of engineering and their teams to gain
deeper visibility into the system’s behavior and uncover valuable insights.

“We had built a big transactional engine, but
it was hard to troubleshoot these systems
when something went wrong.”

— Erik Swan, former CTO and co-founder of Splunk

Advanced analytics and anomaly detection

for rapid problem identification

Modern observability solutions use advanced analytics and anomaly
detection techniques to identify and highlight abnormal system behavior. By
employing machine learning algorithms and statistical models, these solutions
can detect deviations from normal patterns, identify potential issues, and alert
engineering teams. This enables faster problem identification and accelerates
the mean time to resolution (MTTR) and ensures adherence to service-level
objectives (SLOs) by focusing efforts on critical areas that require attention.

oQo/o Distributed tracing and service dependency

mapping for root cause analysis

Distributed tracing provides end-to-end visibility into requests flowing
through complex, distributed systems. By tracing the path of requests across
services and capturing timing and contextual information, VPs of engineering
can understand the dependencies and performance bottlenecks within their
environment.

Service dependency mapping visualizes these relationships — allowing for
better root cause analysis, performance optimization and troubleshooting
of system-wide issues. As the application changes and new services are
deployed and old ones are removed, a dynamic service map makes sure that
issues are pinpointed quickly every time.

“We replaced our monolith with microservices

so that every outage could be more like a
murder mystery.”

— Corey Watson, former head of observability at Stripe

Collaborative incident response and post-

incident analysis

Modern observability solutions facilitate collaborative incident response and

post-incident analysis, enabling effective communication and knowledge TI
sharing among engineering teams. With shared visibility into system metrics, L
traces and logs, teams can collaborate in real-time during incident response, —

diagnose issues collectively, and implement effective mitigation strategies.

Post-incident analysis helps identify the root causes, capture lessons learned

and improve overall system resilience and reliability.

Q Real-user and synthetic

7
ity monitoring
Increasingly, organizations are taking a customer-centric approach to LOG

monitoring with digital experience monitoring, or the combination of RUM (real

user monitoring) and synthetic monitoring. RUM data measures and visualizes
your actual user experience, and can help engineering teams find and fix

J

customer-facing issues.

Synthetic data, on the other hand, can help proactively test user experience
across an entire journey, and proactively find problems before customers
do. Both real-user and synthetic monitoring can be incorporated into metric,

trace, and log data, to further resolve and prioritize end user facing issues.

Case studies:

Examining success from who’s doing

it right

Here are some real-world examples of how modern observability
solutions have helped Splunk customers solve complex challenges in
cloud native environments.

Rappi

The Latin American delivery service processes nearly nine million orders
a month as it grows its business across the region. Their engineering team

manages more than 1,000 microservices, 6,000 hosts and 15,000 containers.

“We're all attuned to the potential business impact of downtime, so we're
grateful that Splunk observability helps us be proactive about reliability and
resilience with end-to-end visibility into our environment, says Jose Felipe
Lopez, engineering manager for Rappi.

OpAann

Dana has 135 million Indonesians using their digital payment platform. They've
experienced 150% growth in annual transactions, making them one of the
most popular e-wallet providers in Indonesia. Dana used legacy monitoring
solutions, including homegrown tools, which resulted in blind spots across
their environments. Troubleshooting performance issues also required an
arduous manual process of sifting through application and infrastructure logs.

“Our old data monitoring tool, which included some legacy homegrown
solutions, only gave us eyes into specific problems, without a holistic picture
of the entire environment,” says Norman Sasono, chief technology officer.

“Splunk gives us both the depth and breadth of visibility we need, helping us
reduce gaps from dropped transactions.”

10

https://www.splunk.com/en_us/customers/success-stories/rappi.html
https://www.splunk.com/en_us/customers/success-stories/dana.html

Remember
three things:

. VPs of engineering face new challenges when managing

cloud native environments.

In today’s cloud native environments, engineering leadership faces
numerous challenges brought about by the increasing complexity of
distributed systems. From ensuring system stability to driving innovation,
they must navigate a landscape that demands seamless performance,
scalability and reliability. The intricate nature of these environments poses
significant hurdles in terms of visibility, troubleshooting and efficient
resource utilization.

Observability practices are vital to ensure system security
and reliability.

Embracing observability practices is crucial for teams operating cloud
native environments. Observability offers a powerful toolkit to gain
comprehensive insights into system behavior, enabling proactive detection
of issues, rapid troubleshooting and informed decision making.

Observability empowers engineering teams to understand the intricacies
of their complex systems, facilitating efficient incident response and
fostering a culture of continuous improvement.

3. Observability is a journey — and you should start today.

As cloud native environments continue to evolve, the adoption of
observability becomes increasingly essential. It is a game changer that
equips engineering leadership with the tools and methodologies to tame
the complexity of their distributed systems. By embracing observability,
they can harness the full potential of modern engineering practices,
overcome challenges, and drive innovation with confidence. It is an
ongoing journey that requires continuous exploration, experimentation
and collaboration among teams.

Checklist when considering observability

solutions in RFPs

Vendor A Vendor B Vendor C

Checklist for Observability Solutions

Ability to ingest/analyze/visualize data volume at scale?

OpenTelemetry-based Instrumentation

Real time monitoring and alerting

Scalability and performance

Distributed tracing and automatic service dependency mapping

Centralized logging and log analysis

Advanced analytics and anomaly detection

Collaborative incident response and post-incident analysis

Integration and compatibility with existing systems

Customizability for business metrics and metrics, traces, logs

Integrated support for real-user monitoring and synthetic monitoring

Learn More.

Solve problems in seconds with the only full-stack,
analytics-powered observability solution.

Schedule Demo

splunk> L

Splunk, Splunk> and Turn Data Into Doing are trademarks and registered
trademarks of Splunk Inc.in the United States and other countries. All other .
brand names, product names or trademarks belong to their respective owners. “

© 2023 Splunk Inc. All rights reserved.

23-265351-Splunk-Ess Guide to O11y for Cloud Native Environments-EB-106

https://www.splunk.com/en_us/about-splunk/contact-us.html

